http://SaturnianCosmology.Org/ mirrored file
For complete access to all the files of this collection
see http://SaturnianCosmology.org/search.php
==========================================================



Oxocarbon


From Wikipedia, the free encyclopedia

Jump to: navigation , search 

An *oxocarbon* or *oxide of carbon* is an inorganic compound
consisting only of carbon  and
oxygen .^[1]  ^[2] 

The simplest and most common oxocarbons are carbon monoxide
(CO) and carbon dioxide 
(CO_2 ). Many other stable or metastable  oxides of
carbon are known, but they are rarely encountered, such as carbon suboxide
(C_3 O_2 or O=C=C=C=O) and mellitic anhydride
(C_12 O_9 ).

	Chemfm carbon monoxide 2 2.svg
	  	Chemfm carbon
dioxide.svg  	  	Chemfm carbon
suboxide.svg  	  	Chemfm mellitic
anhydride.svg 
	CO
Carbon
monoxide 	  	CO_2
Carbon
dioxide 	  	C_3 O_2
Carbon
suboxide 	  	C_12 O_9
Mellitic
anhydride

While textbooks will often list only the first three, and rarely the
fourth, a large number of other oxides are known today, most of them
synthesized since the 1960s. Some of these new oxides are stable at room
temperature. Some are metastable or stable only at very low temperatures,
but decompose to simpler oxocarbons when warmed. Many are inherently
unstable and can be observed only momentarily as intermediates in chemical
reactions or are so reactive that they can exist only in the gas phase or
under matrix isolation conditions.

The inventory of oxocarbons appears to be steadily growing. The existence
of graphene oxide and of other stable polymeric carbon oxides with
unbounded molecular structures^[3] ^[4] suggests that many more remain to
be discovered.


Contents

[hide ]

* 1 Overview 
* 2 General structure 
* 3 Linear carbon dioxides 
* 4 Linear carbon monoxides 
* 5 Radialene-type cyclic polyketones

* 6 New oxides 
* 7 Polymeric carbon oxides 
* 8 See also 
* 9 References 


[edit ] Overview

Carbon dioxide (CO_2 ) occurs widely in nature, and was incidentally
produced by humans since pre-historical times, by the combustion of
carbon-containing substances and fermentation of foods such as beer and
bread . It was gradually recognized as a chemical substance, formerly
called /spiritus sylvestre/ ("forest spirit") or "fixed air", by various
chemists in the 17th and 18th centuries.

Carbon monoxide may occur in combustion, too, and was used (though not
recognized) since antiquity for the smelting of iron from its ores . Like
the dioxide, it was described and studied in the West by various
alchemists and chemists since the Middle Ages. Its true composition was
discovered by William Cruikshank in 1800.

Carbon suboxide was discovered by Brodie in 1873, by passing electric
current through carbon dioxide.^[5]

The fourth "classical" oxide, mellitic anhydride (C_12 O_9 ), was
apparently obtained by Liebig and Wohler in 1830 in their study of mellite
("honeystone") , but was characterized only in 1913, by Meyer and
Steiner.^[6] ^[7] ^[8]

Brodie also discovered in 1859 a sixth compound called graphite oxide ,
consisting of carbon and oxygen in ratios varying between 2:1 and 3:1; but
the nature and molecular structure of this substance remained unknown
until a few years ago, when it was renamed graphene oxide and became a
topic of research in nanotechnology .^[3]


Notable examples of unstable or metastable oxides that were detected only
in extreme situations are dicarbon monoxide radical (:C=C=O), carbon
trioxide (CO_3 ),^[9] , carbon tetroxide (CO_4 ),^[10] ^[11] and
1,2-dioxetanedione (C_2 O_4 ).^[12] ^[13] Some of these reactive carbon
oxides were detected within molecular clouds in the interstellar medium by
rotational spectroscopy .^[14]

Many hypothetical oxocarbons have been studied by theoretical methods but
have yet to be detected. Examples include oxalic anhydride (C_2 O_3 or
O=(C_2 O)=O), ethylene dione (C_2 O_2 or O=C=C=O) ^[15] and other linear
or cyclic polymers of carbon monoxide (-CO-)_/n/ (polyketones ),^[16] and
linear or cyclic polymers of carbon dioxide (-CO_2 -)_/n/ , such as the
dimer 1,3-dioxetanedione (C_2 O_4 )^[17] and the trimer
1,3,5-trioxanetrione (C_3 O_6 ).^[17] ^[18]

	Chemfm oxalic anhydride.svg
	  	Chemfm 1 2 dioxetanedione.svg Chemfm 1 3
dioxetanedione.svg Chemfm 1 3 5 trioxanetrione.svg
	  	Chemfm ethylene dione.svg
	C_2 O_3 Oxalic anhydride C_2 O_4 1,2-Dioxetane- dione C_2 O_4
1,3-Dioxetane- dione C_3 O_6 1,3,5-Trioxane- trione C_2 O_2 Ethylene dione


[edit ] General structure

Normally carbon is tetravalent while oxygen is divalent , and in most
oxocarbons (as in most other carbon compounds) each carbon atom may be
bound to four other atoms, while oxygen may be bound to at most two.
Moreover, while carbon can connect to other carbons to form arbitrarily
large chains or networks, chains of three or more oxygens are rarely if
ever observed. Thus the known electrically neutral oxocarbons generally
consist of one or more carbon skeletons (including cyclic and aromatic
structures) connected and terminated by oxide (-O-, =O) or peroxide
(-O-O-) groups.

Carbon atoms with unsatisfied bonds are found in some oxides, such as the
diradical C_2 O or :C=C=O; but these compounds are generally too reactive
to be isolated in bulk.^[19] Loss or gain of electrons can result
inmonovalent negative oxygen (-O^− ), trivalent positive oxygen (≡O^+
), or trivalent negative carbon (≡C^− ). The last two are found in
carbon monoxide, ^− C≡O^+ .^[20] Negative oxygen occurs in most
oxocarbon anions .


[edit ] Linear carbon dioxides

One family of carbon oxides has the general formula C_n O_2 , or
O=(C=)_/n/ O — namely, a linear chain of carbon atoms, capped by oxygen
atoms at both ends. The first members are

* CO_2 or O=C=O, the well-known carbon dioxide. * C_2 O_2 or O=C=C=O, the
extremely unstable ethylene dione .^[15] * C_3 O_2 or O=C=C=C=O, the
metastable carbon suboxide or tricarbon dioxide. * C_4 O_2 or O=C=C=C=C=O,
tetracarbon dioxide or 1,2,3-Butatriene-1,4-dione^[21]

* C_5 O_2 or O=C=C=C=C=C=O, pentacarbon dioxide ,^[22] stable in solution
at room temp. and pure up to -90°C.^[23]


Some higher member of this family have been detected in trace amounts in
low-pressure gas phase and/or cryogenic matrix experiments, specifically
for /n/ = 7^[23] ^:p.97 and /n/ = 17, 19, and 21.^[24] ^:p.95


[edit ] Linear carbon monoxides

Another family of oxocarbons are the linear carbon monoxides C_/n/ O. The
first member, ordinary carbon monoxide CO, seems to be the only one that
is stable in the pure state at room temperature. Photolysis of the linear
carbon doxides in a cryogenic matrix leads to loss of CO, resulting in
detectable amounts of even-numbered monoxides such as C_2 O, C_4 O,^[19]
and C_6 O.^[23] The members up to /n/=9 have also been obtained by
electrical discharge on gasous C_3 O_2 diluted in argon.^[25] The first
three members have been detected in interstellar space.^[25]

When /n/ is even, the molecules are believed to be in the triplet
(cumulene -like) state, with the atoms connected by double bonds and an
unfilled orbital in the first carbon — as in :C=C=O, :C=C=C=C=O, and, in
general, :(C=)_/n/ =O. When /n/ is odd, the triplet structure is believed
to resonate with a singlet (acetylene -type) polar state with a negative
charge on the carbon end and a positive one on the oxygen end, as in ^−
C≡C-C≡O^+ , ^− C≡C-C≡C-C≡O^+ , and, in general, ^−
(C≡C-)_/n//2 C≡O^+ .^[25] Carbon monoxide itself follows this pattern:
its predominant form is believed to be ^− C≡O^+ .^[20]


[edit ] Radialene-type cyclic polyketones

Another family of oxocarbons that has attracted special attention are the
cyclic radialene -type oxocarbons C_/n/ O_/n/ or (CO)_/n/ .^[26] They can
be regarded as cyclic polymers of carbon monoxide, or /n/-fold ketones of
/n/-carbon cycloalkanes . Carbon monoxide itself (CO) can be regarded as
the first member. Theoretical studies indicate that ethylene dione (C_2
O_2 or O=C=C=O) and cyclopropanetrione C_3 O_3 do not exist.^[15] ^[16] .
The next three members — C_4 O_4 , C_5 O_5 , and C_6 O_6 — are
theoretically possible, but are expected to be quite unstable,^[16] and so
far they have been synthesized only in trace amounts.^[27] ^[28]

	Chemfm cyclopropanetrione.svg
	  	Chemfm cyclobutanetetrone.svg Chemfm
cyclopentanepentone.svg
	  	Chemfm cyclohexanehexone.svg
	(CO)_3 Cyclopropane- trione (CO)_4 Cyclobutane- tetrone (CO)_5
Cyclopentane- pentone (CO)_6 Cyclohexane hexone

On the other hand, the anions of these oxocarbons are quite stable, and
some of them have been known since the 19th century.^[26] They are

* C_2 O_2 ^2− , acetylenediolate (Weiss and Büchner, 1963),^[29] * C_3
O_3 ^2− , deltate (Eggerding and West, 1976),^[30] ^[31] * C_4 O_4 ^2−
, squarate (Cohen and others, 1959),^[32] * C_5 O_5 ^2− , croconate
(Gmelin, 1825),^[33] and * C_6 O_6 ^2− , rhodizonate (Heller,
1837).^[34] ^[35]

The cyclic oxide C_6 O_6 also forms the stable anions of
tetrahydroxybenzoquinone (C_6 O_6 ^4− ) and hexahydroxybenzene (C_6 O_6
^6− ),^[36] The aromaticity of these anions has been studied using
theoretical methods.^[37] ^[38]



[edit ] New oxides

Many new stable or metastable oxides have been synthesized since the
1960s, such as:s:

* C_10 O_8 , benzoquinonetetracarboxylic dianhydride (Hammond, 1963).^[39]
* C_6 O_6 , ethylenetetracarboxylic dianhydride , a stable isomer of
cyclohexanehexone (Sauer and others, 1967).^[40]

* C_12 O_12 or C_6 (C_2 O_4 )_3 , hexahydroxybenzene trisoxalate (Verter
and Dominic, 1967); stable as a tetrahydrofuran solvate.^[41]

* C_10 O_10 or C_6 O_2 (C_2 O_4 )_2 , tetrahydroxy-1,4-benzoquinone
bisoxalate (Verter and others, 1968); stable as a tetrahydrofuran
solvate.^[42] * C_8 O_8 or C_6 O_2 (CO_3 )_2 ,
tetrahydroxy-1,4-benzoquinone biscarbonate (Nallaiah, 1984); decomposes at
about 45–53°C.^[43]

* C_9 O_9 or C_6 (CO_3 )_3 , hexahydroxybenzene triscarbonate (Nallaiah,
1984); decomposes at about 45–53°C.^[43] * C_24 O_6 , a cyclic trimer
of the biradical 3,4-dialkynyl-3-cyclobutene1,2-dione

-C≡C-(C_4 O_2 )-C≡C- (Rubin and others, 1990);^[44]

* C_32 O_8 , a tetramer of 3,4-dialkynyl-3-cyclobutene1,2-dione (Rubin and
others, 1990);^[44] * C_4 O_6 , dioxane tetraketone or dimeric oxalic
anhydride (Strazzolini and others, 1998); stable in Et_2 O at −30°C,
decomposes at 0°C.^[45] * C_12 O_6 , hexaoxotricyclobutabenzene (Hamura
and others, 2006)^[46] ^[47]

	Chemfm benzoquinonetetracarboxylic dianhydride.svg
	  	Chemfm ethylenetetracarboxylic dianhydride.svg
	  	Chemfm tetrahydroxy 1 4 benzoquinone bisoxalate.svg

	C_10 O_8 Benzoquinone- tetracarboxylic dianhydride C_6 O_6
Ethylene- tetracarboxylic dianhydride C_10 O_10 Tetrahydroxy-
1,4-benzoquinone bisoxalate
	Chemfm tetrahydroxy 1 4 benzoquinone biscarbonate.svg
	 
Chemfm dioxane tetraketone.svg
	  	Chemfm hexaphenol trisoxalate.svg
	C_8 O_8 Tetrahydroxy- 1,4-benzoquinone biscarbonate C_4 O_6
Dioxane tetraketone C_12 O_12 Hexahydroxybenzene trisoxalate
	Chemfm hexaphenol triscarbonate.svg
	  	Chemfm tris 3 4 dialkynyl 3 cyclobutene 1 2 dione.svg
	 
Chemfm tetrakis 3 4 dialkynyl 3 cyclobutene 1 2 dione.svg

	C_9 O_9 Hexahydroxybenzene triscarbonate C_24 O_6
Tris(3,4-dialkynyl- 3-cyclobutene- 1,2-dione)  C_32 O_8
Tetrakis(3,4-dialkynyl- 3-cyclobutene- 1,2-dione)
	Chemfm hexaoxotricyclobutabenzene.svg

	C_12 O_6 Hexaoxotricyclo- butabenzene

Many relatives of these oxides have been investigated theoretically, and
some are expected to be stable, such as other carbonate and oxalate esters
of tetrahydroxy-1,2-benzoquinone

and of the rhodizonic, croconic, squaric, and deltic acids.^[16]



[edit ] Polymeric carbon oxides

Carbon suboxide spontaneously polymerizes at room temperature into a
carbon-oxygen polymer , with 3:2 carbon:oxygen atomic ratio. The polymer
is believed to be a linear chain of fused six-membered lactone rings, with
a continuous carbon backbone of alternating single and double bonds.
Physical measurements indicate that the mean number of units per molecule
is about 5–6, depending on the formation temperature.^[4] ^[48]


	Chemfm poly carbon suboxide Ls.svg
	Chemfm poly carbon suboxide 1sHs.svg Chemfm poly carbon suboxide i
1sHs.svg
	Chemfm poly carbon suboxide sR.svg
	Terminating and repeating units of polymeric C_3 O_2 .^[4]


	Chemfm poly carbon suboxide Lb 1bHb bR.svg
	Chemfm poly carbon suboxide Lb 2bHb bR.svg
	Chemfm poly carbon suboxide Lb 3bHb bR.svg
	Chemfm poly carbon suboxide Lb 4bHb bR.svg

	Oligomers of C_3 O_2 with 3 to 6 units.^[4]

Carbon monoxide compressed to 5 GPA in a diamond anvil cell yields a
somewhat similar reddish polymer with a slightly higher oxygen content,
which is metastable at room conditions. It is believed that CO
disproportionates in the cell to a mixture of CO_2 and C_3 O_2 ; the
latter forms a polymer similar to the one described above (but with a more
irregular structure), that traps some of the CO_2 in its matrix.^[49]
^[50] .

Another carbon-oxygen polymer, with C:O ratio 5:1 or higher, is the
classical graphite oxide^[3] and its single-sheet version graphene oxide .


[edit ] See also

* Oxocarbon anion * Pseudo-oxocarbon anion


[edit ] References

1. *^ * International Union of Pure and Applied Chemistry (1995).
"Oxocarbons ". /Compendium of Chemical Terminology / Internet edition. 2.
*^ * R. West, editor (1980), /Oxocarbons/. Academic Press, New York. 3. ^
^/*a*/ ^/*b*/ ^/*c*/ William S. Hummers Jr., and Richard E. Offeman
(1958), "Preparation of Graphitic Oxide". J. Am. Chem. Soc., 1958, 80 (6),
1339-1339 doi :10.1021/ja01539a017

4. ^ ^/*a*/ ^/*b*/ ^/*c*/ ^/*d*/ A. W. Snow, H. Haubenstock, N.-L. Yang
(1978): "Poly(carbon suboxide). Characterization, Polymerization, and
Radical Structure". Macromolecules, 11 (1), pp 77–86. doi
:10.1021/ma60061a015

5. *^ * Brodie B. C. (1873). "Note on the Synthesis of Marsh-Gas and
Formic Acid, and on the Electric Decomposition of Carbonic Oxide" .
/Proceedings of the Royal Society (London)/ *21*: 245–247. doi
:10.1098/rspl.1872.0052 .
http://links.jstor.org/sici?sici=0370-1662%281872%2F1873%2921%3C245%3ANOTSOM%3E2.0.CO%3B2-J.  
6. *^ * J. Liebig, F. Wöhler (1830), /Ueber die Zusammensetzung der
Honigsteinsäure/ Poggendorfs Annalen der Physik und Chemie, vol. 94,
Issue 2, pp.161–164. Online version

accessed on 2009-07-08. 7. *^ * Meyer H, Steiner K (1913.). "Über ein
neues Kohlenoxyd C_12 O_9 (A new carbon oxide C_12 O_9 )". /Berichte der
Deutschen Chemischen Gesellschaft / *46*: 813–815.  8. *^ * Bugge
(1914), /Chemie: En neues Kohenoxyd./ Review of Meyer and Steiner's
discovery of C_12 O_9 . Naturwissenschaftliche Wochenschrift, volume
13/29, issue 12, 22 March 1914, p. 188. Online version

accessed on 2009-07-09. 9. *^ * DeMore W. B., Jacobsen C. W. (1969).
"Formation of carbon trioxide in the photolysis of ozone in liquid carbon
dioxide". /Journal of Physical Chemistry/ *73* (9): 2935–2938. doi
:10.1021/j100843a026 .  10. *^ * Laurence Y. Yeung, Mitchio Okumura,
Jeffrey T. Paci, George C. Schatz, Jianming Zhang and Timothy K. Minton
(2009), /Hyperthermal O-Atom Exchange Reaction O2 + CO2 through a CO4
Intermediate./ J. of the American Chemical Society, volume 131, issue 39,
pages 13940–13942. doi :10.1021/ja903944k

11. *^ * Corey S. Jamieson, Alexander M. Mebel, Ralf I. Kaiser (2007).
"Novel detection of the C-2v isomer of carbon tetraoxide (CO4)". /Chemical
Physics Letters/ *440* (1–3): 105–109. doi
:10.1016/j.cplett.2007.04.043 .  12. *^ * Herman F. Cordes, Herbert P.
Richter, Carl A. Heller(1969), /Mass spectrometric evidence for the
existence of 1,2-dioxetanedione (carbon dioxide dimer). Chemiluminescent
intermediate./ J. Am. Chem. Soc., 1969, 91 (25), p 7209. doi
:10.1021/ja01053a065

13. *^ * Richard Bos, Neil W. Barnett, Gail A. Dyson, Kieran F. Lim,
Richard A. Russell and Simon P. Watson (2003), /Studies on the mechanism
of the peroxyoxalate chemiluminescence reaction: Part 1. Confirmation of
1,2-dioxetanedione as an intermediate using 13C nuclear magnetic resonance
spectroscopy/. Analytica Chimica Acta, Volume 502, Issue 2, 30 January
2004, Pages 141-147. doi :10.1016/j.aca.2003.10.014

14. *^ * H. M. Pickett E. A. Cohen B. J. Drouin J. C. Pearson (2003),
/Submillimeter, Millimeter, and Microwave Spectral Line Catalog/. NASA
/JPL , Online verstion accessed on 2009-07-11. 15. ^ ^/*a*/ ^/*b*/ ^/*c*/
Detlef Schröder; Christoph Heinemann, Helmut Schwarz, Jeremy N. Harvey,
Suresh Dua, Stephen J. Blanksby, John H. Bowie (1998). "Ethylenedione: An
Intrinsically Short-Lived Molecule". /Chemistry - A European Journal/ *4*
(12): 2550–2557. doi :10.1002/(SICI)1521-3765(19981204)4:123.0.CO;2-E .  
16. ^ ^/*a*/ ^/*b*/ ^/*c*/ ^/*d*/ Haijun Jiao and Hai-Shun Wu (2003), /Are
Neutral Oxocarbons Stable?/ J. Org. Chem., volume 68, 1475-1479. doi
:10.1021/jo026243m

17. ^ ^/*a*/ ^/*b*/ Errol Lewars(1996), /Polymers and oligomers of carbon
dioxide: ab initio and semiempirical calculations/. Journal of Molecular
Structure: THEOCHEM, Volume 363, Number 1, pp. 1–15 18. *^ * Matthew L.
Shirel and Peter Pulay (1999), /Stability of Novel Oxo- and
Chloro-Substituted Trioxanes/. J. Am. Chem. Soc., vol. 121 issue 37, pp
8544–8548. doi :10.1021/ja984451j

19. ^ ^/*a*/ ^/*b*/ Günter Maier and Hans Peter Reisenauer (2001),
/Carbenes in Matrices: Specrospcopy, Structure, and Photochemical
Behavior/. In Udo H. Brinker (ed.), /Advances in carbene chemistry/, page
135. Elsevier, 332 pages. ISBN 0444508929 , 9780444508928 20. ^ ^/*a*/
^/*b*/ W. Kutzelnigg (2002). /Einführung in die Theoretische Chemie/.
Wiley-VCH. ISBN 3-527-30609-9 .  21. *^ * Günther Maier, Hans Peter
Reisenauer, Heinz Balli, Willy Brandt, Rudolf Janoschek (1990): "C_4 O_2
(1,2,3-Butatriene-1,4-dione), the First Dioxide of Carbon with an Even
Number of C Atoms". Angewandte Chemie (International Edition in English),
volume 29, issue 8 , Pages 905–908. 22. *^ * Günther Maier, Hans Peter
Reisenauer, Ulrich Schäfer, and Heinz Balli (1988). "C5O2
(1,2,3,4-Pentatetraene-1,5-dione), a New Oxide of Carbon". /Angewandte
Chemie International Edition in English/ *27* (4): 566–568. doi
:10.1002/anie.198805661 .  23. ^ ^/*a*/ ^/*b*/ ^/*c*/ Frank W. Eastwood
(1997), /Gas Phase Pyrolytic Methods for the Preparation of
Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds./. In Yannick
Vallée/Gas Phase Reactions in Organic Synthesis/.CRC Press; ISBN
9056990810 , 9789056990817 24. *^ * Roman Reusch (2005),
/Absorptionsspektroskopie von langen Kohlenstoff-Kettenmolekülen und
deren Oxide in kryogenen Matrizen./ Thesis, Ruprecht-Karls-Universität
Heidelberg (in German) 25. ^ ^/*a*/ ^/*b*/ ^/*c*/ Teruhiko Ogata and
Yoshio Tatamitani (2008), /The Simplest Linear-Carbon-Chain Growth by
Atomic-Carbon Addition and Ring Opening Reactions/. J. Phys. Chem. A,
volume 112 issue 43, pp. 10713–10715. doi :10.1021/jp806725s

26. ^ ^/*a*/ ^/*b*/ Gunther Seitz, Peter Imming (1992). "Oxocarbons and
pseudooxocarbons". /Chem. Rev./ *92* (6): 1227–1260. doi
:10.1021/cr00014a004 .  27. *^ * Detlef Schröder,; Helmut Schwarz, Suresh
Dua, Stephen J. Blanksby and John H. Bowie (May 1999). "Mass spectrometric
studies of the oxocarbons CnOn (n = 3–6)". /International Journal of
Mass Spectrometry/ *188* (1–2): 17–25. doi
:10.1016/S1387-3806(98)14208-2 .  28. *^ * Richard B. Wyrwas and Caroline
Chick Jarrold (2006), /Production of C6O6- from Oligomerization of CO on
Molybdenum Anions/. J. Am. Chem. Soc. volume 128 issue 42, pages
13688–13689. doi :10.1021/ja0643927

29. *^ * Werner Büchner, E. Weiss (1963) /Zur Kenntnis der sogenannten
«Alkalicarbonyle» I Die Kristallstruktur des Kalium-acetylendiolats,
KOC≡COK/. Helvetica Chimica Acta, Volume 46 Issue 4, Pages 1121–1127.
doi :10.1002/hlca.19630460404

30. *^ * David Eggerding and Robert West (1976), /Synthesis and Properties
of Deltic Acid (Dihydroxycyclopropenone) and the Deltate Ion/ J. American
Chemical Society, volume 98, p, 3641–3644. doi :10.1021/ja00428a043

31. *^ * David Eggerding, Robert West (1975), /Synthesis of
Dihydroxycyclopropenone (Deltic Acid)/. J. American Chemical Society,
volume 97 issue 1, pp 207–208. doi :10.1021/ja00834a047

32. *^ * Sidney Cohen, John R. Lacher, Joseph D. Park (1959)
/Diketocyclobutanediol/. J. American Chemical Society, Vol. 81, p. 3480.
doi :10.1021/ja01522a083

33. *^ * Leopold Gmelin (1825), /Ueber einige merkwürdige, bei der
Darstellung des Kaliums nach der Brunner'schen Methode, erhaltene
Substanzen/. Poggendorfs Annalen der Physik und Chemie, volume 4, p. 31.
Online version

accessed on 2009-07-08. 34. *^ * Johann Florian Heller (1837), /Die
Rhodizonsäure, eine aus den Produkten der Kaliumbereitung gewonnene neue
Säure, und ihre chemischen Verhältnisse/, Justus Liebigs Annalen der
Pharmacie, volume 24, issue 1, pp. 1–16. Online version

accessed on 2009-07-08. 35. *^ * Carl Löwig (1839), /Chemie der
organischen Verbindungen/. F. Schultess, Zürich. 36. *^ * Haiyan Chen,
Michel Armand, Matthieu Courty, Meng Jiang, Clare P. Grey, Franck Dolhem,
Jean-Marie Tarascon, and Philippe Poizot (2009), /Lithium Salt of
Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion
Battery/ J. Am. Chem. Soc., 131 (25), pp. 8984–8988 doi
:10.1021/ja9024897

37. *^ * R. West, J. Niu (1969, /Non-benzenoid aromatics/. Vol. 1. Edited
by J. Snyder. Academic Press New York. 38. *^ * Schleyer, P. v. R.;
Najafian, K.; Kiran, B.; Jiao, H. (2000). "Are Oxocarbon Dianions
Aromatic?". /J. Org. Chem./ *65* (2): 426–431. doi :10.1021/jo991267n .
PMID 10813951 .  39. *^ * P. R. Hammond (1963), /1,4-Benzoquinone
Tetracarboxylic Acid Dianhydride, C10O8: A Strong Acceptor/. Science, Vol.
142. no. 3591, p. 502 doi :10.1126/science.142.3591.502

40. *^ * Jürgen Sauer, Barbara Schröder, Richard Wiemer (1967), /Eine
Studie der Diels-Alder-Reaktion, VI. Kinetischer Nachweis des Moleküls
C6O6 (Dianhydrid der Äthylentetracarbonsäure)/. Chemische Berichte
Volume 100 Issue 1, Pages 306-314 doi :10.1002/cber.19671000135

41. *^ * H. S. Verter, R. Dominic (1967), /A new carbon oxide: synthesis
of hexahydroxybenzene tris oxalate/. Tetrahedron, Volume 23, Issue 10, ,
Pages 3863-3864 doi :doi:10.1016/S0040-4020(01)97894-9

42. *^ * H. S. Verter, H. Porter, and R. Dominic (Verter, Porter and
Dominic, 1968), /A new carbon oxide: synthesis of tetrahydroxybenzoquinone
bisoxalate/. Chemical Communications (London), p. 973b–974. doi
:10.1039/C1968000973b

43. ^ ^/*a*/ ^/*b*/ C. Nallaiah (1984), /Synthesis of
tetrahydroxy-1,4-benzoquinone biscarbonate and hexahydroxybenzene
triscarbonate - new organic carbon oxides/Tetrahedron, Volume 40, Issue
23, 1984, Pages 4897-4900 doi :10.1016/S0040-4020(01)91324-9

44. ^ ^/*a*/ ^/*b*/ Yves Rubin, Carolyn B. Knobler, and Francois Diederich
(1990). "Precursors to the cyclo[n]carbons: from
3,4-dialkynyl-3-cyclobutene-1,2-diones and
3,4-dialkynyl-3-cyclobutene-1,2-diols to cyclobutenodehydroannulenes and
higher oxides of carbon". /J. Am. Chem. Soc./ *112* (4): 1607–1617. doi
:10.1021/ja00160a047 .  45. *^ * Paolo Strazzolini, Alberto Gambi, Angelo
G. Giumanini and Hrvoj Vancik (1998). "The reaction between ethanedioyl
(oxalyl) dihalides and Ag2C2O4: a route to Staudinger’s elusive
ethanedioic (oxalic) acid anhydride". /J. Chem. Soc., Perkin Trans./ *1*:
2553–2558. doi :10.1039/a803430c .  46. *^ * T. Hamura, Y. Ibusuki, H.
Uekusa, T. Matsumoto, J. S. Siegel, K. K. Baldridge, K. Suzuki (2006).
/Dodecamethoxy- and Hexaoxotricyclobutabenzene: Synthesis and
Characterization./ J. Am. Chem. Soc. 128, 10032–10033. doi
:10.1021/ja064063e

47. *^ * Holger Butenschön (2007). "A new oxocarbon C_12 O_6 via highly
strained benzyne intermediates.". /Angew Chem Int Ed Engl/ *46* (22):
4012–4014. doi :10.1002/anie.200700926 . PMID 17508349 .  48. *^ * B. D.
Kybett, G. K. Johnson, C. K. Barker, and J. L. Margrave (1965), "The Heats
of Formation and Polymerization of Carbon Suboxide". J. Phys. Chem., 69
(10), 3603–3606. doi :10.1021/j100894a060

49. *^ * A. I. Katz, D. Schiferl, and R. L. Mills (1984), /New phases and
chemical reactions in solid carbon monoxide under pressure./ J. Physical
Chemistry, volume 88 issue 15, 3176–3179. doi :10.1021/j150659a007

50. *^ * W. J. Evans, M. J. Lipp, C.-S. Yoo, H. Cynn, J. L. Herberg, R. S.
Maxwell, and M. F. Nicol (2006), /Pressure-Induced Polymerization of
Carbon Monoxide: Disproportionation and Synthesis of an Energetic Lactonic
Polymer./ Chemistry of Materials, vol. 18, 2520–2531. doi
:10.1021/cm0524446


[show ] v • d • e

*Oxocarbons* Common oxides CO_2 · CO Exotic oxides C_2 O_2 · C_3 O_2 ·
C_4 O_2 · C_5 O_2 · C_2 O · CO_3 · CO_4 · C_12 O_9 Compounds derived
from oxides Metal carbonyls · Carbonic acid · Bicarbonates · Carbonates


[show ] v • d • e

Inorganic compounds of carbon Oxides and related *Oxides* (CO_2 , CO ) ·
Metal carbonyls · Carbonic acid · Bicarbonates · Carbonates

Other ionic compounds Cyanides · Isocyanides · Cyanates · Thiocyanates
· Isothiocyanates · Carbides · Fulminates · Thiofulminates

Retrieved from "http://en.wikipedia.org/wiki/Oxocarbon" Categories :
Oxocarbons | Carbon compounds | Oxygen compounds